
Physics H7C Fall 1999 Solutions to Problem Set 7 Derek Kimball

Above the front door of Niels Bohr’s cottage was nailed a horseshoe. A visitor who
saw it exclaimed: “Being as great a scientist as you are, do you really believe that
a horseshoe above the entrance to a home brings good luck?”
“No,” answered Bohr, “I certainly do not believe in this superstition. But you
know,” he added with a smile, “they say that it does bring luck even if you don’t
believe in it!”

- George Gamow, excerpted from Thirty Years that Shook Physics.

If you have any questions, suggestions or corrections to the solutions, don’t hesitate
to e-mail me at dfk@uclink4.berkeley.edu!

Problem 1

This problem makes sense only if you make some rather poorly motivated ap-
proximations. In particular, we must assume that we are far away from resonance
(namely that ω2

0−ω2 � γω). We also can assume that there are very few electrons
(namely that Ne2

mε0
� 1, which is well-motivated by the fact that κ is much less than

n, i.e. few absorbers). If we make these approximations, the results follow almost
immediately. If you don’t make these assumptions, then the results are clearly
incorrect (see Figure 6.1 in Fowles, which is nothing like the equations Fowles asks
us to derive). Thus, we’ll make these assumptions!

Then we can apply these approximations to equations 6.34 and 6.35 in Fowles. We
find that:

n2 − κ2 ≈ n2 ≈ 1 +
Ne2

mε0

1
ω2

0 − ω2
(1)

Using a first order Taylor expansion, we then find that:

n ≈ 1 +
Ne2

2mε0

1
ω2

0 − ω2
(2)

Since n is approximately 1, κ is given by:

κ ≈ Ne2

2mε0

γω

(ω2
0 − ω2)2

. (3)

Problem 2

Once again Fowles attempts to confuse us by implying the above results can be
applied in the solution to this problem when they can’t. This is because the above

equations break down in the vicinity of the resonance, which is where we must
work to solve this problem. So here we bring back the γ2ω2 terms, but continue
to assume there are few electrons. In this case our formulas for κ and n are given
by:

n ≈ 1 +
Ne2

2mε0

ω2
0 − ω2

(ω2
0 − ω2)2 + γ2ω2

(4)

and

κ ≈ Ne2

2mε0

γω

(ω2
0 − ω2)2 + γ2ω2

. (5)

If we take the derivative of n with respect to ω and set it equal to zero, we find
two positive roots yielding the values for the max and min of the the function n,
namely

ω = ω0

√
1± γ/ω0.

It is safe to assume, since damping is small, that this value can be approximated
by the first order Taylor expansion:

ω = ω0 ± γ/2.

If we plug these values into our expression for κ (Eq. 5), we see that these values
are those where κ attains half its maximum value.

Problem 3

We are given that σ = 6.8 × 107 mho/m and that Ne = 1.5 × 1028 electrons/m3.
Using these values in the appropriate Fowles formulas gives us the desired an-
swers...

(a)

Plasma frequency

ωp =

√
Ne2

mε0
= 6.9× 1015s−1

(b)

Relaxation time

τ =
µ0σc

2

ω2
p

= 1.6× 10−13s
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(c)

Our frequency with a wavelength of 10−6 m is given by

ω =
2πc
λ

= 1.9× 1015s−1.

Real and imaginary parts of the index of refraction can be derived from from
Fowles Eqs. 6.55 and 6.56:

n2 − κ2 = 1− ω2
p

ω2 + τ−2

2nκ =
1
ωτ

ω2
p

ω2 + τ−2

Clearly, ωp, ω � τ−1, so we get

n2 − κ2 ≈ 1−
(ωp

ω

)2

= −12.2

2nκ ≈ 1
ωτ

ω2
p

ω2
= 0.044.

We can then solve these equations for n and κ, and with a little algebra we get:

n = 0.006

κ = 3.5.

(d)

The reflectance is given by the Hagen-Rubens formula,

R = 1−
√

8ωε0
σ

≈ 1.

Problem 4

This problem, as Prof. Strovink pointed out, is a little bit tricky. Our experimenter
finds 1 event in 106 interactions. Now we want to be 90% sure we find a second
event. How many interactions do we need? The basic problem is that we don’t
really know the average number of events we should see per 106 interactions, which
is needed to calculate how many more interactions are necessary to be 90% sure
we’ll see a second event. So we’ll have to try to figure out some function describing

our confidence in the value of a we have measured and then convolve it with the
probability for seeing a second event.

The probability density function, in this case that for Poisson statistics, is given
by:

fp(x) =
e−aax

x!
(6)

where x is a non-negative integer and a is the average value of x. The probability
density function (with known parameter a) allows us to predict the frequency with
which random data x will take on some particular value.

We first want to calculate a value for a = n·p (where n is the number of interactions
and p is the probability for an event), a distribution function based on the most
likely values for a and our confidence in those values. The most likely value of p
from the data is 10−6.
For a conservative upper limit (without assuming very much about the prior prob-
ability distribution), we can estimate that the lower limit of p (at a 95% confidence
level) must be that for which the probability of seeing one event in 106 interactions
is at least 5%:

fp(1) = e−npnp ≥ 0.05, (7)

which tells us that np ≥ 0.05, or p ≥ 5 × 10−8. Furthermore, we know that the
upper limit at 95% confidence level on p can be found from:

fp(1) = e−npnp ≤ 0.95, (8)

which tells us that p ≤ 5.14× 10−6.

We want to be 90% sure we’ll see a second event. We could guess that if we’re
95% sure p is bigger than pmin = 5× 10−8 and 95% sure that we’ll see at least one
more event after n2 interactions using this value for p, we’ll be 90% sure to see a
second event. We’re 95% sure we’ll see at least one more event if the probability
to see zero events is less than 0.05:

fp(0) = e−n2pmin ≤ 0.05,

which gives us
n2 ≥ 6× 107 interactions.

This is a conservative upper limit on the number of interactions we need before
we’ll see another event.
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The above analysis gives us some idea of what our “likelihood distribution” L̃
for p looks like... it is peaked at 1 × 10−6 and nears zero at both 5 × 10−8 and
5.14× 10−6. It is well described by the function

L̃(p) =
p

p0
e−p/p0

where p0 = 10−6 is the most likely value for p. It is not an accident that this
looks exactly like fp(1). This, as Prof. Strovink explained to me, is just Bayes’
assumption of a uniform prior probability distribution – meaning that we assume
we found the most likely value of p0 in our experiment and the distribution of
probabilities is that from, in our case, Poisson statistics.

A little more mathematical rigor can be applied if we take our “likelihood distri-
bution” L̃ for p and convolve it with the restriction that the probability for zero
events must be less than 10%. This approach yields more or less the same result
as Rohlf’s answer, which is reasonable since in the Bayesian approach we assume
a prior probability distribution with p0 = 10−6 as the central value. Rohlf just
assumed that a priori we knew the probability for an event to occur would be
p0 = 10−6. If we try this approach, we find that:∫ ∞

0
L̃(p)en2pdp∫ ∞

0
L̃(p)dp

≤ 0.1

Plugging in our assumed prior probability distribution or “likelihood distribution”
and using the substitution u = (1/p0 + n2)p in the numerator’s integral, we find:

1
p0

∫ ∞

0

p

p0
e−p/p0e−n2pdp =

1
p2
0 · (1/p0 + n2)

2 ≤ 0.1.

From which we can calculate n2 = 2.16×106 for 90% CL that we will see a second
event. This is far smaller than our original rough estimate, but assumes a prior
probability distribution. This is probably the more correct approach.

Well, as you can probably tell, this problem was quite difficult for me, so don’t
feel too bad if you had some trouble as well...

Problem 5

As evidenced by the sampling of problems from Rohlf, we can guess his two main
interests are particle physics and beer.

The expression for the number of particles from the ideal gas law is:

N =
PV

kT
. (9)

We can take the derivative of N with respect to time to obtain:

dN

dt
=

P

kT

dV

dt
. (10)

We know from the statement of the problem that the number of CO2 molecules is
proportional to the surface area of the beer bubbles,

dN

dt
= Cr2.

Also, assuming a spherical bubble, we know that

dV

dt
= 4πr2 dr

dt
.

Plugging these into Eq. (10), we find that:

dr

dt
=

CkT

4πP
, (11)

which indicates the radius of the bubble increases linearly with time.

Problem 6

The power given off by the sun is S (power radiated per unit area) times the
surface area of the sun, which is:

PS = (σT 4
S) · (4πR2

S) (12)

The portion of this power received by the earth is scaled down by the emissivity
factor ε (earth is treated as a gray body) and the cross-sectional area of the earth
over the surface area of a sphere with a radius equal to the distance between the
earth and the sun:

P
(in)
E = ε(σT 4

S) · (4πR2
S)

πR2
E

4πR2
ES

(13)

The power re-radiated by the earth is given by:

P
(out)
E = (εσT 4

S)(4πR
2
E). (14)

In equilibrium, P (in)
E = P

(out)
E . If we equate these expressions, we find that:

T 4
E

T 4
S

=
1
4

R2
S

R2
ES

, (15)
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from which we deduce that
TE = 290 K.

Problem 7

(a)

We apply Wien’s law to get the peak of the earth’s blackbody spectrum. First,
the constant can be derived from plugging in the known parameters for the sun:

λmax =
C

T

C = λmax,sunTS = (0.58 µm)(5800 K) = 3364µm K.

Applying Wien’s law to the earth, we get:

λmax,earth =
C

TE
= 11.2 µm.

(b)

If half the power re-radiated from the dirt is radiated back into the greenhouse at
every interface with the walls, in equilibrium the power radiated by the dirt should
be twice that incident from the sun. The power from the sun hitting the dirt of
the greenhouse is:

P
(dirt)
S = (σT 4

S)(4πR
2
S)
Area of dirt
4πR2

ES

, (16)

The power re-radiated by the dirt is:

P
(dirt)
out = σT 4

dirt · (Area of dirt) (17)

Setting 2P (dirt)
out = P

(dirt)
S , we find that:

T 4
dirt =

T 4
S

2
R2

S

R2
ES

Tdirt = 333 K.

Problem 8

Since we only get half the light power from the sun that we used to down on the
earth, the new temperature on earth T ′

E is given simply by:

T ′
E =

(
1
2

)1/4

TE = 252 K = −5.3 oF.

Brrrr......
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